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 

Abstract— In this paper we present a combinatorial way of 

representing states that arise from the various smoothings of 

knots. We also apply such presentations in calculating 

polynomial invariant of knots. 

 

 
Index Terms— Kauffman bracket polynomial, Knot 

Invariants, Oriented links, Smoothing, States.  

 

I. INTRODUCTION 

    Knots have been in existence since time immemorial 

and still and have been an object of study by many 

researchers.Mathematical study of knots can be traced back 

to the work of Alexander and Reidemeister [2, 4]. More 

recently, knots have found application in other disciplines 

including Biology, where they have been used to study DNA 

and RNA [9, 1]. Knots have also been applied in chemistry 

and physics as well [3, 8, 7].  

               

        Given two knots it is a difficult problem to distinguish 

between them or tell if they are equivalent. Several knot 

invariants have been developed over the years for this 

purpose. Polynomial invariants such as Alexander 

polynomial [2] , Jones polynomial [11], Conway polynomial 

[5], HOMFLY polynomial [10]  and the Kauffman bracket 

polynomial [6] have been used in distinguishing between 

knots. The main problem with topological invariant of a knot 

is the fact that computations increases tremendously 

whenever one moves to a knot with more crossings. In the 

case of Kauffman bracket polynomial for instance, the 

number of states doubles with each additional crossing. Also, 

smoothing about the crossings result into closed curves, 

which may be quite complex to recognize when the number 

of crossings is large.  

 

We shall show how to count and put together the states 

arising from smoothing in such a way that states with same 

Kaufmann polynomials. With this count, one can then 

calculate the Kauffman bracket polynomial for a given knot 

with 𝑛  crossings without drawing all the   states. This 

significantly reduces the complexity in such computations. 

  

The outline of the paper is as follows. In section 2 we 

introduce terminologies and build notations used in the paper. 

In section 3 we present the combinatorial argument and show 

how it applies to presentation of the states before drawing  

conclusions in section 4. 
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II. KAUFFMAN  BRACKET  POLYNOMIAL 

    A permutation is the different arrangements of a given 

number of elements taken one by one, some or all at the same 

time where the order is important.  A combination is a 

selection of some or all of a number of different objects 

where the order is not important.  

Given a knot diagram D, then for a fixed crossing, one can 

rotate the knot diagram so that the crossing looks like the one 

shown below. 

 

 
 

There are two ways of resolving this crossing. One can 

connect the ’northwest’ strand to the ’southwest’ strand and 

the ’northeast’ strand to the ’southeast’ strand. This is a 

resolution of type A also known as type A smoothing. 

Another resolution is achieved by connecting ’northwest’ 

strand to the ’northeast’ strand and connecting the ’southwest’ 

strand to the ’southeast’ strand. This is a resolution of type B 

or a type B smoothing.  

The Kauffman bracket is a Laurent polynomial as it allows 

both positive and negative integer powers. It is defined in 

terms of states and the number of type 𝐴  and type B 

smoothings. The state of a diagram D of a knot with type 𝐴 

and type B crossings is a diagram that results after applying 

the smoothings to each crossing of D. For each state ,   

where 𝑎 is the number of type A smoothings 

and 𝑏 is the number of type B smoothings. 

Then the Kauffman bracket of the diagram D is 

obtained by taking the sum of all the terms where   

denotes the number circles in the state S.  

A knot is called oriented if a direction is assigned to it. A 

crossing is called right-handed if an observer stationed on the 

over passing arc and facing in the direction of that arc 

observes the under passing arc's direction as from right to left. 

Otherwise, we will call the crossing left-handed.   

The Kauffman bracket polynomial of an oriented knot 

bracket is defined as , where  denotes the 

number of right-handed crossings of a knot diagram D, 𝑙 the 

number of left-handed crossings of  and denotes 

the Kauffman bracket. 

Since a knot with 𝑛 crossings has   states, calculation of 

 involve taking a sum of   polynomials. However, 

these states can be grouped so that one works with the sum 

over the permutations arising for some fixed 𝑎 and 𝑏.  
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III. COMBINATORIAL PRESENTATION OF STATES. 

      

We now present the combinatorial representation of the 

states. We shall call two circles adjacent if they are related by 

a smoothing.  Circles will be labeled with upper case letters. 

Also crossings on the original knot will be numbered in some 

order, and consistency of this order maintained. Since there 

are only two types of smoothing, each state shall bear 

symbols after the smoothing type and an adjacency relation. 

For example, the symbol 
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stands for the state arising from applying three type 𝐴 

smoothing applied to the three crossings of the trefoil knot.  

    Rather than calculating the Kauffman bracket for 

individual state, we consider classes of cases arising by fixing 

𝐴 and 𝐵. This then allows for a direct calculation of number 

of circles.  

      The first step in the process, after labeling the crossings, 

is to applying type 𝐴 smoothing only or type 𝐵 smoothing 

only and draw the resulting state. For our purpose, we start by 

considering only type 𝐴 smoothing only. The next step is to 

apply type B smoothing, changing the symbols one at a time 

until we end up with only type 𝐵 smoothing for each type 𝐴 

smoothing in the initial state. Throughout the process, we 

record the possible number of states grouped according to the 

number of circles that arise. The following two tables give 

results for left-handed Trefoil knot. 

 

Number of smoothing 

type 

Number 

of circles 

 

number 

states  

  

3 0 3 1 

2 1 2 3 

1 2 1 3 

0 3 2 1 

   

Table 1:  States for Trefoil Knot 

 

We now use the figure-8 Knot to illustrate the argument. 

Consider the figure-eight knot in “Fig 1” below. 

 

 

 
Fig 1: Figure 8 Knot.  

 

Let us number the crossings from top, middle, bottom right 

then bottom left as 1, 2, 3 and 4 respectively. We will choose 

our orientation such that we move downwards from 1 to 3.  

After carrying out type  𝐴  smoothing about all these 

crossings, we end up with three circles, one circle on top of 

the other and a third circle enclosing the two, which we may 

label as , B, and C. For our case, let A be the circle 

enclosing B and C where B is on top of C. In terms of 

notation (1), this initial state can be expressed a, 
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Number 

of 

smoothing 

of  type 

Number 

of circles 

number 

states 

Calculation 

for number of 

states 

  
4 0 3 1 1 

3 1 2 4 
 

2 2 1 5 

 
3 1 

 
1 3 2 4 

 
0 4 3 1 

 
   

Table 2: states for Trefoil Knot 

Remark. 

    Note that the number of circles for the first case can be 

determined from the drawing, while those for the second case 

are one less. A similar argument is true for the last case and 

the second last case, that is, they can easily be obtained 

diagrammatically. 

 

With this table in place, the Kauffman bracket polynomial 

can be calculated as follows; 
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IV. CONCLUSION 

Calculation of Kauffman bracket polynomial for a knot with 

 crossings involve calculation   states. For the figure 8 

knot, one needs to calculate 16 such polynomials. Grouping 

the states by smoothing type as well as the number of circles 

has given rise to only 6 classes. In general, for “nice” 

instances, the number of groupings by smoothing types and 

number of circles will give n+1 cases. Such a grouping makes 

calculations less tedious and also minimizes the errors that 

may arise while dealing with many cases. 
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